Monoclonal Antibodies In the Treatment of Multiple Sclerosis

John W. Rose, M.D.
VASLCHCS/University of Utah
Neurovirology Research Laboratory
Disclosures

• John Rose, MD
 Grants/research support: NMSS, NIH, Teva Neuroscience, Biogen, VA
 Advisory Board Member: DECIDE trial Biogen/Abbott
 Honoraria from Industry: None

• CME Support: Unrestricted Education Grants from Biogen and Teva Neuroscience

• Monoclonal Antibodies except for Natalizumab are investigational therapies for MS and the subject of ongoing clinical trials (Clinical Trials.gov)

• CME Staff Disclosures
 Professional Education Services Group staff have no financial interest or relationships to disclose.
Disclosures Continued

This continuing education activity is managed and accredited by Professional Education Service Group. The material presented in this activity represents the opinion of the faculty. Neither PESG, nor any accrediting organization endorses any commercial products displayed in conjunction with this activity.

Commercial Support was not received for this activity.
Learning Objectives

At the conclusion of this activity, the participant will:

• A. Describe the benefits and risks of FDA approved therapy for MS, Natalizumab.

• B. Recognize the pharmacologic and clinical features of emerging monoclonal antibody therapies for MS

• C. Discuss the relative merits of contemporary treatment and emerging monoclonal antibody therapies
Nobel Prizes: Immunology

- 1977 Radioimmunoassay Yalow
- 1980 MHC Snell, Dausset, Benacerraf
- 1984 MAbs Kohler & Milstein
- 1984 Immune Networks Jerne
- 1987 Ab Gene Rearrangement Tonegawa
- 1991 Transplantation Immunology Thomas & Murray
- 1996 Cell Mediated Immunity Doherty & Zinkernagel
<table>
<thead>
<tr>
<th>MAb Specificity</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11</td>
<td>Augments EAE</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Augments EAE</td>
</tr>
<tr>
<td>CD4</td>
<td>Blocks EAE</td>
</tr>
<tr>
<td>α4</td>
<td>Inhibits EAE</td>
</tr>
<tr>
<td>IL-2R</td>
<td>Inhibits EAE</td>
</tr>
<tr>
<td>Lingo-1</td>
<td>Increases Remyelination</td>
</tr>
</tbody>
</table>
Humanized Monoclonal Antibody

FIG. 1. Topology and functional architecture of the IgG molecule. (From Wasserman and Capra, ref. 1, with permission.)
Monoclonal Antibodies

ixmab zumab umab
Monoclonal Antibody Rx for MS

<table>
<thead>
<tr>
<th>Mab</th>
<th>Specificity</th>
<th>Target</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natalizumab</td>
<td>α4 integrin</td>
<td>Adhesion</td>
<td>+</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>CD52</td>
<td>T Cells</td>
<td>+</td>
</tr>
<tr>
<td>Rituximab</td>
<td>CD20</td>
<td>B Cells</td>
<td>+</td>
</tr>
<tr>
<td>Rituximab</td>
<td>CD20</td>
<td>B cells</td>
<td>+</td>
</tr>
<tr>
<td>Ocrelizumab</td>
<td>CD20</td>
<td>B cells</td>
<td>+</td>
</tr>
<tr>
<td>Ofatumumab</td>
<td>CD20</td>
<td>B cells</td>
<td>?</td>
</tr>
<tr>
<td>Daclizumab</td>
<td>IL-2Rα</td>
<td>Activated</td>
<td>+</td>
</tr>
<tr>
<td>Li81/BIIB033</td>
<td>Lingo</td>
<td>OPCs</td>
<td>?</td>
</tr>
</tbody>
</table>
Natalizumab

- FDA Approved for Relapsing MS
- Mechanism of Action: Binds Integrin and Blocks Entrance of Inflammatory Cells into the CNS
- Side Effects: PML, Respiratory Tract and Bladder Infections
- Cost: High
- Utilization: Refractory or Aggressive RRMS
- Efficacy: Highly Effective Immunosuppressive Therapy; Improved Quality of Life
- Importance of JC titer and Previous Immunosuppressive Rx & Anti-JC Virus Ab
H. Waldmann developed the Campath-1 (Cambridge Pathology) series of antibodies

- IgG1κ with human variable and constant regions and murine CDR
 - “Humanised” by Winter that reduces the chances of mounting an immune response

- Targets CD52 antigen: Found on thymocytes, NK cells, B cells but not plasma cells, monocytes and granulocytes
Side Effects of Alemtuzumab

- Hyperthyroidism (16%)
- Immune Thrombocytopenic Purpura (3%)
- Goodpasture’s Disease (infrequent)
- Serious Infections (7%)
- Recapitulation of Previous Symptoms
- Long-Term Immunosuppression
Alemtuzumab vs IFN Beta 1a

Alemtuzumab decreases risk of relapse
Alemtuzumab decreases risk of progression
Alemtuzumab vs IFN 5 year follow-up

Alemtuzumab Open label study for refractory MS
Rituximab

- Targets and selectively depletes CD20 positive B cells
- FDA approved for relapsed or refractory, low-grade or follicular, CD 20+, B cell non-Hodgkins lymphoma, diffuse large B-cell lymphoma in combination with CHOP, refractory rheumatoid arthritis
Rituximab

- Chimeric murine/human mAb
- Contains a human IgG1 immunoglobulin region and a murine variable region specific for CD20
CD 20

- Integral transmembrane nonglycosylated hydrophobic phosphoprotein
- Present on surface of normal pre-B cells and mature B cells
- Not on plasma cells
- Precise function is unknown
Rituximab: mechanisms of action

- Antibody dependent-cell mediated cytotoxicity
- Complement-dependent cytotoxicity
- Induction of apoptosis
- B-cell depletion from 6-9 months or longer (variable)
Side Effects of Rituximab

- Infusion related reactions
 - Rigors, chills
 - Fevers, headache
 - Rash
 - bronchospasm

- Infectious
 - URI
 - Herpes Zoster
 - PML

- Hematologic
 - Neutropenia
 - Thrombocytopenia
 - Human anti-chimeric antibodies?
Rituximab In MS

- Phase I Open Label in RRMS
- Phase II Multi-Center Randomized Trial in RRMS
- Open Label Treatment in NMO
- Retrospective of Treatment for NMO
- Current Use Similar to Phase II Trial
Anti-CD20 Mabs In Clinical Trials

- Ofatuzumab Dose Study in RRMS: Phase 2
- Ocrelizumab + Placebo (IFN) vs Placebo (Ocrelizumab) + IFN = 2 Trials: Phase 3
- Ocrelizumab vs IFN in PPMS: Phase 3

- Clinical Trials.gov
DACLIZUMAB: Anti IL-2Raα
IL-2 Receptor

- Intermediate affinity: NK cells, Resting T cells
- High affinity: Activated T cells, B cells
- Low affinity: IL-2
Daclizumab: Mechanism of Action
Daclizumab Mechanism of Action

- Blocks IL-2 Binding to Receptor
- Inhibits Immune Response to Antigenic challenge
- Recall Responses Generally Preserved
- Inhibits Allograft Rejection
- Increases NK Cell Activity
- Interferes with Transpresentation of IL2
- Reduces CSF IgG Index and CXCL13
Autoreactive T Cells In MS
Daclizumab Pharmacology

- Humanized IgG1 MAb
- MW = 144KD
- 90% Human/10% Mouse
- Targets Activated Lymphocytes
- 1/2 Life = 20 days (range 11-30)
- Rare Hypersensitivity Reactions
- Anti-Id Abs: 8.4% low titer
- Side Effects: Rash, Lymphadenopathy, Respiratory Infections
Daclizumab Therapy

- Renal Allograft: FDA Approved
- Uveitis: NEI
- MS: NIB & UofU
- Ulcerative Colitis: Multiple Centers
- Asthma: Multiple Centers
- Tumor Vaccination Rx: Phase II Studies
MS Treatment With Daclizumab: A Case Series

- Off Label Rx
- Failure of other Therapies
- EDSS at Baseline
- Duration of Treatment
- Dosage
- ΔEDSS -1.0 to -4.5 responders
- ΔEDSS -0.5 to 0 stable
- Early Discontinuation of Rx
- Side Effects:

21 Ambulatory Patients
19/21 Patients
2.5-6.5
5-25 months (ave 13.6 mos)
0.8-1.9 mg/kg q 28 days IV
10 Patients (5 RR & 5 2P)
9 Patients (1RR & 8 2P)
2 Patients
paraesthesias, mild rash, GI, anemia, URI
Daclizumab: MRI Effects
Daclizumab/Zenapax Study Design for RRMS

With Concurrent IFN-beta
Including the Extension With IFN-beta Withdrawal (NIB/NIH*)

3 months 5.5 months 10 months follow-up (12 months)

Daclizumab start IFN-beta off End of study period

Baseline 3 months 4 MRIs
Daclizumab Monotherapy
+ IFN-b
5.5 months
7 infusions

Continuation of Daclizumab (12 months)

Inclusion Criteria: Relapse in past 12M and 2 or more CEL on Baseline MRIs on IFN

The Cumming Foundation provided funding for the clinical trial. Protein Design Laboratories supplied the Daclizumab. *Dr. Roland Martin
Daclizumab Rx: Primary Outcome Measure

ANOVA: Tukey-Kramer Multiple Comparisons Test
DAC Phase II Secondary Outcomes

A. Relapses (Average)

B. Timed Ambulation

C. EDSS (Average)

D. NRS
CHOICE Trial Cumulative CELs

- **Placebo**
- **DAC 1 mg/kg**
- **DAC 2 mg/kg**

Mean cumulative number of Gd+ lesions ± SEM

Study week:
- 0
- 4
- 8
- 12
- 16
- 20
- 24

* indicates significant difference from placebo.
New and Enlarged Gd+ Lesions by Quartile of CD56bright NK cell Counts when Measured at the Last DAC Dose (week 20)

*Mean number of new/enlarged Gd+ lesions between weeks 8–24 adjusted for number of Gd+lesions on baseline MRI. †Test for linear trend by quartile, p=0.006. ‡Number of subjects (n) for quartiles ranking by CD56bright NK cell count and the number of subjects in the DAC low/IFNβ verses DAC high/IFNβ treatment (x:y).
Daclizumab Trials

- SELECT Trial: Completed Multicenter Phase II trial demonstrated 55% reduction in relapses with SC administration.
- DECIDE Trial: Ongoing International Multicenter Phase III Trial of DAC HYP (SC) versus IFNB-1a (2013 completion)
Anti-Lingo 1

- Safety and Tolerability in Healthy Volunteers: Completed Study
- Safety, Tolerability and PK Profile in MS Patients: Study Completed
- Phase II Trial In Development: Expected to start soon
- First MAb to Promote Remyelination
Monoclonal Antibody Rx for MS: Limitations

- Side Effects: Allergy, Fever, Rash, Infection, Autoimmune Disease, Recurrence of Sx, lymphadenopathy
- Unknown Long Term Effects
- Cost Effectiveness
- Routes of Administration
- Duration of Therapy & Proper Follow-up
Monoclonal Antibodies In MS Rx: A Bright & Stormy Future
Future Directions MS RX

• Antibodies to New Determinants: CDs, Cytokine and Chemokine Receptors, Adhesion Molecules, Cell Differentiation Factors

• Combination and Sequential Therapies: Anti-inflammatory, Neuroprotective & Regenerative Agents
Mitoxantrone 2012

- FDA Approved for Rx MS
- Mechanism of Action: Chemotherapeutic Immunosuppressive Agent
- Side Effects: Cardiotoxicity (20%/6%), Post Therapy Leukemia (0.1 to 1.0%), Infection
- Dosing Q3 Months: 5-12 mg/m²: Switzerland
- Relative Cost: Low to Moderate
- Utilization: Treatment of Refractory or Aggressive MS, Induction Prior to Other Rx (IFN or GA)
- Efficacy: Effective Immunosuppressive Rx in Multiple Studies: France, Germany, Italy, Ireland
Judging Efficacy of Treatment

- Number of Relapses/Year
- Severity of Relapses and Degree of Recovery
- Progression
- MRI Activity
- Biomarkers: Immunologic, Markers of Neurodegeneration, Advanced MRI Measures, OCT
MS Rx: Complex Decision

- Stratification Of Rx: Efficacy; Safety & Cost
- Individualized Rx Choice: Clinical Course, Coexisting Medical Conditions, Previous Rx, Evidence of Ineffective Rx
- Disease Severity
- Expected Duration of Rx
- Neuroprotective Rx and Immunologic Rx
- Monitoring Immunotherapies: Immunologic Measures- Lymphocytes & Phenotypes
Collaborators

- Noel Carlson, Ph.D.
- Kenneth Hill, B.S.
- Monica Rojas, M.D.
- James Burns, M.D.
- Julia Klein, APRN
- Connie Kawai R.N.
- Dana DeWitt M.D.
- Jane Bjorklund
- Andrea White, Ph.D
- Hilary Watt, B.S.

- Judith Warner, M.D.
- Jeanette Townsend, M.D.
Colleagues

- J Richard Baringer
- John Greenlee
- Robert Fujinami
- Ikuo Tsunoda
- William Stroop
- Mark Leppert
Obtaining CME/CE Credit

- If you would like to receive continuing education credit for this activity, please visit:

 http://pva.cds.pesgce.com/