Evaluation of Methods to Estimate Renal Function vs. Actual Drug Clearance in Individuals with SCI

Jennifer Lee, Pharm.D., BCPS
Anthony Dang, Pharm.D., BCPS
VA Long Beach Healthcare System
jennifer.lee4332a@va.gov
Aug 28th, 2012
Disclosures

This continuing education activity is managed and accredited by Professional Education Service Group. The information presented in this activity represents the opinion of the author(s) or faculty. Neither PESG, nor any accrediting organization endorses any commercial products displayed or mentioned in conjunction with this activity.

Commercial Support was not received for this activity.
Disclosures

• Jennifer Lee, Pharm.D., BCPS
• Anthony Dang, Pharm.D., BCPS

Has no financial interest or relationships to disclose

• CME Staff Disclosures

Professional Education Services Group staff have no financial interest or relationships to disclose.
Objectives

At the conclusion of this activity, the participant will be able to:

1. Evaluate different methods of estimating GFR compared to patient-specific vancomycin and AG drug clearance (CL_{DRUG}) in SCI patients.

2. Determine if a new equation can be developed to more accurately estimate GFR in SCI patients in order to optimize dosing for vancomycin and AG.

3. Assess if there is a difference in the estimation of renal function between anatomical degrees of SCI when compared to CL_{DRUG}.
VA Long Beach Healthcare System

- Tertiary Care Facility
- Total SCI beds: 90
Pre-Test Assessment Questions

- **T / F**: Higher peak and trough concentrations increase risk of aminoglycoside-induced ototoxicity and nephrotoxicity.

- **T / F**: Creatinine production declines with age, immobility, and reduced muscle mass.

- **T / F**: Individuals with spinal cord injury (SCI) have better drug clearance than the general population.
Creatinine

- A muscle breakdown product
- Produced at a constant rate
- Exclusively filtered by the kidneys

Chronic SCI

1. Limited Mobility
2. ↓ Muscle Mass
3. ↓ SCr
4. ↑ CrCl
5. Over-dosing
6. ↑ ADR

Vancomycin & Aminoglycosides

- Dose related toxicity:
 - Ototoxicity
 - Nephrotoxicity

- Primarily renal elimination

Methods to estimate GFR

- Cockcroft-Gault (CG) equation⁷
- Modified CG equation
- MDRD equation⁸
- CKD-EPI equation⁹
- 24-Hour endogenous creatinine clearance^{1,10}

Cockcroft-Gault (CG)7

\[CL_{CG} \text{ (mL/min)} = \frac{[(140 - \text{age}) \times \text{IBW in kg}]}{(72 \times \text{SCr})}; \text{ (multiply 0.85 for females)} \]

Modified CG formula (CL\textsubscript{M}):

- SCr rounded to 1 mg/dL for patients with SCr < 1 mg/dL while using the actual SCr for patients with SCr \(\geq 1 \) mg/dL

Overestimation by CG

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Population</th>
<th>Methodology</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macdiarmid et al.¹</td>
<td>25 Paraplegic 11 Tetraplegic</td>
<td>$\text{CL}{\text{CG}}$ vs. $\text{CL}{24\text{H}}$ vs. 99mTc-DTPA</td>
<td>$\text{CL}_{24\text{H}}$ more accurate</td>
</tr>
<tr>
<td>Mirahmadi et al.²</td>
<td>22 Paraplegic 36 Tetraplegic 22 ambulatory</td>
<td>$\text{CL}{\text{CG}}$ vs. $\text{CL}{24\text{H}}$ vs. Autoanalyser</td>
<td>Correction factor: 0.8 for paraplegic 0.6 for tetraplegic</td>
</tr>
<tr>
<td>Lavezo et al.¹¹</td>
<td>14 SCI 14 control</td>
<td>Actual vs. Predicted CL_{VANCO}</td>
<td>↑half-life in SCI</td>
</tr>
</tbody>
</table>

MDRD equation8

4-Variable MDRD:

\[\text{eGFR} = 175 \times \text{standardized SCr}^{-1.154} \times \text{age}^{-0.203} \times 1.212 \ (\text{if black}) \times 0.742 \ (\text{if female}) \]

CG vs. MDRD

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Population</th>
<th>Methodology</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikkalingaiah KBM et al.</td>
<td>116 SCI</td>
<td>$\text{CL}{24H}$ vs. CLCG vs. MDRD</td>
<td>Correction factor: 0.7 for MDRD 0.8 for CL_CG</td>
</tr>
<tr>
<td>Bookstaver PB et al.</td>
<td>71 non-SCI</td>
<td>Actual CLAG vs. CLCG vs. MDRD</td>
<td>MDRD better</td>
</tr>
<tr>
<td>Ryzner KL.</td>
<td>55 non-SCI</td>
<td>Actual CLAG vs. CLCG vs. MDRD</td>
<td>CL_CG better</td>
</tr>
</tbody>
</table>

CKD-EPI equation

$$eGFR = 141 \times \min \left(\frac{SCr}{\kappa}, 1 \right)^{\alpha} \times \max \left(\frac{SCr}{\kappa}, 1 \right)^{-1.209} \times 0.993^{\text{Age}} \times 1.018 [\text{if female}] \times 1.159 [\text{if black}]$$

where κ is 0.7 for females and 0.9 for males,

α is -0.329 for females and -0.411 for males,

min indicates the minimum of SCr/κ or 1,

& max indicates the maximum of SCr/κ or 1.

CG vs. CKD-EPI

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Population</th>
<th>Methodology</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pai et al. (^{15})</td>
<td>2073 non-SCI</td>
<td>(CL_{AG} \text{ vs. } CL_{CG} \text{ vs. } \text{MDRD} \text{ vs. } \text{CKD-EPI})</td>
<td>(\text{CKD-EPI} > \text{MDRD} > CL_{CG})</td>
</tr>
</tbody>
</table>

24-Hour Endogenous Creatinine Clearance10

\[
\text{CL}_{24\text{H}} \ (\text{mL/min}) = \frac{\text{urine creatinine } \times \text{ urine volume (mL)}}{\text{SCr } \times \text{ time (hours)} \times 60}
\]

Methodology

- IRB Approved
- Study Design: Retrospective chart review
- Study Period: 1/1/2008 – 12/31/08
Inclusion Criteria

- Patients at VALB with an ICD-9 diagnosis of spinal cord injury for >1 year
 - Received amikacin, gentamicin, tobramycin, or vancomycin with at least one steady state level
Exclusion Criteria

- Hemodialysis or acute kidney injury
- Limb amputation
- Multiple sclerosis
- Inappropriate data for monitoring
Methodology

- VA electronic medical record (Computerized Patient Record System)

- Pharmacokinetic calculations via non-steady state short infusion model\(^{16}\)
 \[C_{\text{peak}} = \frac{(Dose/t_{\text{inf}}) \times (1-e^{-kt_{\text{inf}}})}{V_d} \times K_e \]
 \[C_{\text{trough}} = C_{\text{peak}} \times e^{-kt} \]
 \[CrCl (L/hr) = V_d \times K_e \]

Methodology

- Volume of distribution calculations17:
 - Vancomycin
 - $V_d = 0.17(\text{age}) + 0.22(\text{TBW}) + 15$
 - Aminoglycosides
 - Peak levels were used to calculate V_d

17 Rushing TA. \textit{J Pharm Technol}, 2001; 17: 33-8.
Methodology

- Actual drug clearance (CL_{DRUG})
- CG CrCl (CL_{CG})
- Modified CG CrCl (CL_{M})
- Adjusted 24-hour endogenous CrCl (CL_{24H})
- MDRD equation
- CKD-EPI equation
Statistical Analyses

- 2-sided students t-test with alpha=0.01 for significance
- 95% Power
 - Determined Post Hoc given results
- Linear Regression
- All analyses performed using Microsoft® Excel
Results
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of patients</td>
<td>141</td>
</tr>
<tr>
<td>Male/Female, N</td>
<td>140/1</td>
</tr>
<tr>
<td>Tetraplegic/ Paraplegic, N</td>
<td>89/52</td>
</tr>
<tr>
<td>Vancomycin/ Amikacin, N</td>
<td>109/32</td>
</tr>
<tr>
<td>SCr >1 mg/dL, N</td>
<td>30</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65.72 ± 10.54</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>179.96 ± 7.01</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80.35 ± 20.69</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>24.6 ± 5.78</td>
</tr>
<tr>
<td>SCr (mg/dL)</td>
<td>0.74 ± 0.29</td>
</tr>
</tbody>
</table>
Evaluation of different methods to estimate GFR

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean ± S.D. (mL/min)</th>
<th>Difference from CL_{DRUG} (mL/min)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL_{DRUG}</td>
<td>49.77 ± 19.97</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>MDRD</td>
<td>119.76 ± 61.49</td>
<td>69.99</td>
<td><0.001</td>
</tr>
<tr>
<td>CKD-EPI</td>
<td>90.71 ± 27.44</td>
<td>40.94</td>
<td><0.001</td>
</tr>
<tr>
<td>CL_{24H}</td>
<td>85.16 ± 33.88</td>
<td>35.39</td>
<td><0.001</td>
</tr>
<tr>
<td>CL_{CG}</td>
<td>91.24 ± 36.90</td>
<td>41.47</td>
<td><0.001</td>
</tr>
<tr>
<td>CL_{M}</td>
<td>69.38 ± 13.49</td>
<td>19.61</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Difference between MDRD and CL_{DRUG}

Number of Patients

Abbreviations: MDRD, the Modification of Diet in Renal Disease equation; CL_{DRUG}, actual drug clearance.
Difference between \(CL_M \) and \(CL_{DRUG} \)

Abbreviations: \(CL_M \), modified Cockcroft-Gault formula; \(CL_{DRUG} \), actual drug clearance.
Evaluation of CL_M to estimate CL_{DRUG} for vancomycin and AG

<table>
<thead>
<tr>
<th></th>
<th>Mean ± S.D. (mL/min)</th>
<th>Difference from CL_{DRUG} (mL/min)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Amikacin and Vancomycin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=141)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL_{DRUG}</td>
<td>49.77 ± 19.97</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>CL_M</td>
<td>69.38 ± 13.49</td>
<td>19.61</td>
<td><0.001</td>
</tr>
<tr>
<td>Amikacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL_{DRUG}</td>
<td>57.27 ± 28.22</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>CL_M</td>
<td>69.37 ± 14.08</td>
<td>12.1</td>
<td>0.033</td>
</tr>
<tr>
<td>Vancomycin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=109)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL_{DRUG}</td>
<td>47.57 ± 16.34</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>CL_M</td>
<td>69.38 ± 13.38</td>
<td>21.81</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Determining SCI Study Equation

Actual Drug Clearance (mL/min)

Modified Cockcroft-Gault Predicted Drug Clearance (mL/min)

$y = 2.3286x^{0.7}$

$R = 0.4$
Linear Regression Plots

$y = 0.8425x + 6.7281$

$R = 0.4$

Actual Drug Clearance (mL/min)

Predicted Drug Clearance using CL_{SCI} (mL/min)

Abbreviation: CL_{SCI}, spinal cord injury equation
CL\textsubscript{DRUG} vs. CL\textsubscript{SCI}

- T-Test showed no difference between SCI equation and actual drug clearance.

<table>
<thead>
<tr>
<th></th>
<th>Mean S.D. (mL/min)</th>
<th>Difference from CL\textsubscript{DRUG} (mL/min)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL\textsubscript{DRUG}</td>
<td>47.57 +/- 16.34</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CL\textsubscript{SCI}</td>
<td>45.22 +/- 6.16</td>
<td>-2.35</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Different anatomical degrees of SCI

<table>
<thead>
<tr>
<th>(N=141)</th>
<th>Mean Difference from CL_{DRUG}</th>
<th>S.D. (mL/min)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraplegics (n = 52)</td>
<td>Tetraplegics (n = 89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL_{SCI}</td>
<td>-3.11</td>
<td>13.14</td>
<td>-5.39</td>
</tr>
<tr>
<td>CL_{M}</td>
<td>21.04</td>
<td>13.81</td>
<td>18.76</td>
</tr>
<tr>
<td>CL_{24H}</td>
<td>32.60</td>
<td>30.78</td>
<td>37.02</td>
</tr>
<tr>
<td>CL_{CG}</td>
<td>27.26</td>
<td>20.56</td>
<td>49.76</td>
</tr>
<tr>
<td>CKD-EPI</td>
<td>27.52</td>
<td>25.50</td>
<td>48.77</td>
</tr>
<tr>
<td>MDRD</td>
<td>40.68</td>
<td>40.71</td>
<td>50.64</td>
</tr>
</tbody>
</table>
DISCUSSION
Discussion

- Current methods for estimating GFR grossly overestimate drug clearance in chronic SCI patients compared to the SCI Study Equation
Discussion

- $CL_{SCI} = 2.3286 \times x^{0.7006}$, where $x = CL_M$ with SCr rounded to 1 if SCr < 1 for all SCI patients.
 - More accurate
 - More precise
Limitations

- Small number of patients in amikacin group
- Veterans population
- Variability inherent in using clinical data
- Assumption: $\text{CL}_{\text{CR}}=\text{CL}_V=\text{CL}_{\text{AG}}$
- Accuracy of vancomycin V_d
- Actual GFR values for > 60 ml/min
- Abbreviated MDRD
- No adjustment for BSA
- Retrospective study: limited control over certain confounding variables
Conclusion

• Current methods used to calculate CL_{CR} overestimate CL_{DRUG} in SCI patients

• The proposed SCI equation:

$$\text{CL}_{\text{SCI}} = 2.3^x^{0.7}$$

($x = \text{CL}_M$ with SCr rounded to 1 if SCr < 1)
Future Plans

- Validate CL_{SCI} in a prospective analysis
- Further analysis with aminoglycosides
References

References

Post-Test Assessment Questions

- **T / F**: Higher peak and trough concentrations increase risk of aminoglycoside-induced ototoxicity and nephrotoxicity.

- **T / F**: Creatinine production declines with age, immobility, and reduced muscle mass.

- **T / F**: Individuals with spinal cord injury (SCI) have better drug clearance rates than the general population.
Obtaining CME/CE Credit

If you would like to receive continuing education credit for this activity, please visit:

http://www.pesgce.com/PVA2012