Bone Loss After SCI: What Do Animal Studies Tell Us About the Cause and Potential Treatments

Christopher P. Cardozo, MD
Director, Molecular Program, COE for the Medical Consequences of SCI
James J. Peters VAMC, Bronx, NY
Associate Professor, Mount Sinai School of Medicine, New York, NY
Disclosures

• Christopher Cardozo, MD
 Grants/research support:
 VA Research and Development Service Grants B4162C, B4616R, and F6997R and the DOD.

• CME Staff Disclosures
 Professional Education Services Group staff have no financial interest or relationships to disclose.
Learning Objectives

At the conclusion of this activity, the participant will be able to:

• A. Discuss the key changes in molecular signals pertinent to bone loss after SCI.
• B. Discuss the potential role of androgens in treatment of bone loss after SCI suggested by findings from animal studies.
• C. Discuss acute benefits to bone health of mechanical reloading of bone by FES that are suggested by animal studies.
• Identify two potential targets for drugs in bone loss after SCI.
Utility of Animal Models

• Examine the temporal sequence of changes in bone mass and structure
• Through genetic manipulations, determine the underlying cellular and molecular events
• Evaluate candidate therapies
Wnt Signaling (Canonical)

- sFRP
- Wnt
- Frizzled Receptor
- LRP5 (Co-receptor)
- Sclerostin
- DKK1
- Cytoplasmic Membrane
Key Elements in Bone Biology

- **Osteoblast**
- **Osteoclast**
- **Mesenchymal Stem Cells**
- **Hematopoietic Stem Cells**

Cyclical Loading

Wnt

Unloading

Sclerostin

DKK1

RANKL

OPG

Bone Resorption

Bone Formation

Osteocyte
Effect of Unloading on SOST/Sclerostin
Robling et al. 2008 J Biol Chem 283:5866-75/

• In the rat ulna, mechanical loading reduced SOST and increased bone formation rates.
• These changes correlated with loading and strain gradients.
• Unloading increased SOST expression in-vivo at 3 and 7 days.
Ex-vivo Culture of Marrow Cells

Bone Marrow Stromal Cells

- RANKL

Osteoclast
- TRAP+
- Multinucleated
- Bone Resorption

Pre-osteoblast
- Alk. Phos +
- ascorbic acid-2-phosphate

Osteoblast
- Bone Nodules
Male rats had hindlimbs unloaded for 5 days by tail suspension.

Osteoblast numbers in bone and bone formation rate were reduced by 34% and 39%.

Numbers of osteoblasts present in ex-vivo cultures of bone marrow stromal cells was reduced and these OB exhibited reduced bone forming activity.

Unloading stimulated increased IL-6 release from bone marrow stromal cells.
• Male Rats (juvenile) with a severe (10gx50 mm) contusion injury studied at 10 days after SCI
• BMD at the proximal metaphysis reduced by 34%.
• 3-fold increase in osteoclast numbers at the growth plate.
• There appeared to be a reduction in bone formation rate at the distal metaphysis and a mineralization defect of newly formed bone.
• Thinning and disorganization of chondrocytes was noted at the growth plate.
Evidence that Androgens Influence Bone

Animal Model

• Male Wistar rats with complete transection at T9-T10.
• Nandrolone plus testosterone (replacement dose) administered beginning day 29 after SCI and continued through day 56.
• Bones harvested for analysis at day 56.
Nandrolone Reduces Bone Loss After SCI

Sham
SCI
SCI+Nandrolone

Femur

BMD (g/cm²)

Tibia

BMD (g/cm²)
Nandrolone Reversed Upregulation of Osteoclast Markers after SCI

Osteoclast Differentiation Markers

- TRAP
- Calc R

[Graph showing relative expression levels of TRAP and Calc R for Sham, SCI, and SCI+Nandrolone groups, with statistical significance indicated by asterisks (*) and triple asterisks (***)]
Differentiation Pathway of Osteoblasts

Mesenchymal Stem Cell → Runx2 → Pre-osteoblast → Osterix → Osteoblast

Bone Sialoprotein
Osteocalcin
Collagen
Nandrolone Partially Reversed Reductions in Osteoblast Differentiation Markers

Osteoblast Differentiation Markers

- **Runx2**: Relative Expression (% of control)
 - ****: p < 0.001
 - *: p < 0.05

- **Osteocalcin**: Relative Expression (% of control)
 - ****: p < 0.001
 - *: p < 0.05

- **BSP**: Relative Expression (% of control)
 - ****: p < 0.001
 - *: p < 0.05
Nandrolone Increased OPG Expression

A. OB OPG

B. OB RANKL

C. OB OPG/RANKL

Sham
SCI
SCI+Nandrolone
Nandrolone Increased Wnt Signaling Genes

A. OB Wnt3a

B. OB LRP5

C. OB Fzd5

D. OB ENC1

- **Sham**
- **SCI**
- **SCI+Nandrolone**

Relative Expression (% of control)
FES&Bone: Experimental Design

- **Spinal cord transection** T_{9-10}
- **Sciatic N**
- **Common peroneal N**
- **Anterior tibial N**
- **FES electrodes**
- **Gastrocnemius**
- **Plantaris**
- **Soleus**
- **Stimulator ON**
- **Stimulator OFF**

Timeline
- **SCI**
- **FES implanted**
- **FES Initiated**
- **Euthanize**
 - 0 weeks
 - 14 weeks
 - 16 weeks
 - 17 weeks
Effects on the Plantaris Muscle of FES for 7 Days

- **Weight**
- **MAFbx mRNA**
- **MurF1 mRNA**
SCI Led to Reductions in Bone Mass

Areal BMD by DEXA Scan:
Distal Femur and Prox. Tibia

MicroCT Studies: Prox. Tibia

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>SCI</th>
<th>SCI+FES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV/TV(%)</td>
<td>0.65±0.04</td>
<td>0.34±0.01</td>
<td>0.30±0.02 NS</td>
</tr>
<tr>
<td>Tb.N (µm⁻¹)</td>
<td>6.09±0.32</td>
<td>4.77±0.05</td>
<td>4.42±0.09 NS</td>
</tr>
<tr>
<td>Tb.Th (µm)</td>
<td>0.13±0.01</td>
<td>0.09±0.02 **</td>
<td>0.08±0.01 NS</td>
</tr>
<tr>
<td>Tb.Sp (µm)</td>
<td>0.11±0.01</td>
<td>0.18±0.01 ***</td>
<td>0.19±0.01 NS</td>
</tr>
</tbody>
</table>
Effect of FES on Blood Markers of Bone Metabolism

Bone Resorption Marker

Bone Formation Marker

- Serum CTX (ng/ml)
- Serum Osteocalcin level (% of control)

Sham
SCI
FES+SCI

*
Properties of Ex-vivo Cultures of Osteoclasts

TRAP staining

Osteoclast Counts

OC Differentiation Markers

- Sham
- SCI
- FES+SCI

TRAP+ Osteoclasts (% of control)

Fold Change

- Calcitonin receptor
- Integrin beta3
- TRAP
Properties of Ex-vivo Cultured Osteoblasts

CFU-OB staining

CFU-F staining

Osteoblast Colony Counts

Fold Change

- **Sham**
- **SCI**
- **FES+SCI**

Osteoblast Differentiation Markers

- Runx2
- Osteocalcin
- BSP
Expression in Ex-vivo Cultures of Osteoblasts (OB) of RANKL and OPG

![Bars showing expression levels of OB OPG, OB RANKL, and OB OPG/RANKL with statistical significance indicated by asterisks (*) and double asterisks (**) for different groups: Sham, SCI, and FES+SCI.](image-url)
Expression in Osteoblasts of Wnt-Signaling Molecules

- **OB DKK1**
 - Sham: *
 - SCI: **
 - FES+SCI: ***

- **OB SOST**
 - Sham: ***
 - SCI: **
 - FES+SCI: *

- **OB sFRP2**
 - Sham: *
 - SCI: **
 - FES+SCI: *

- **OB Wnt 5a**
 - Sham: *
 - SCI: **
 - FES+SCI: *

- **OB Wnt 3a**
 - Sham: ***
 - SCI: *
 - FES+SCI: *
Key Molecular Signals in Bone

- **Sclerostin**
 - **DKK1**
 - **SCI Unloading**
- **Osteocyte**
- **Osteblast**
 - **Runx2**
 - **ENC1**
- **FES**
 - **Cyclical Loading**
- **Wnt**
 - **Bone Formation**
- **Nandrolone**
 - **Testosterone**
- **RANKL**
 - **OPG**
 - **Bone Resorption**

- **Osteoclast**
Microarray Analysis of Gene Expression in Osteoblasts and Osteoclasts

Table 1. Selected results of a pathways analysis of the microarray data.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Osteoblasts</th>
<th>Osteoclasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedgehog-PTH signaling</td>
<td>15/37 genes, p 8.1x10^-7</td>
<td>9/37 genes, p 1.62x10^-2</td>
</tr>
<tr>
<td></td>
<td>12/52</td>
<td>PTH Signaling, 12/59</td>
</tr>
<tr>
<td>ß-Adrenergic signaling</td>
<td>12/53 genes, p 3.85x10^-3</td>
<td>Vitamin D 12/59</td>
</tr>
<tr>
<td></td>
<td>9/40</td>
<td>Receptor 9/40</td>
</tr>
<tr>
<td>Wnt Signaling</td>
<td>4.55x10^-3</td>
<td>Oxytocin 9/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signaling 2.89x10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSH Signaling 2.89x10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium/NFAT 10/57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signaling 1.11x10^-2</td>
</tr>
</tbody>
</table>
Early Effects of Reloading by FES on Bone

• In a subacute model of SCI:
 – FES rapidly reduces the accelerated bone resorption that is a characteristic of SCI.
 – FES reduces expression of inhibitors of Wnt signaling (SOST, DKK1 and sFRP2).
 – FES increases expression of Wnts and the Wnt-responsive gene OPG.
 – Increased OPG explains in part the favorable effects of FES on bone resorption after SCI.
What Clinical Directions do Studies in Animal Models of SCI Support

- Androgens may be beneficial to bone and may reduce bone resorption to a clinically meaningful degree.
- Interventions targeted against Wnt inhibitors, such as sclerostin may be beneficial after SCI.
- Interventions targeting RANKL may reduce bone resorption during the subacute period after SCI.
- Animal models permit the study of acute and subacute periods after SCI.
- There is a lack of animal systems that model the chronic phase of SCI-related bone loss.
• James J. Peters VAMC
 – Yong Wu
 – Weiping Qin
 – Yiwen Qin
 – Lauren Collier
 – Jiangping Pan
 – Xin-hua Liu
 – Bill Bauman

• MSSM
 – Mone Zaidi

• Cleveland ATP COE
 – Graham Creasy

• University of Liverpool
 Jonathan Jarvis

VA Rehabilitation Research and Development Service
Obtaining CME Credit

• If you would like to receive CME credit for this activity, please visit:

 http://www.pesgce.com/PVAsummit2011/

• This information can also be found in the Summit 2011 Program on page 8.