Immune Dysregulation in Secondary Progressive MS

Benjamin M. Segal, M.D.
Holtom-Garrett Professor of Neurology
Director, Multiple Sclerosis Program
University of Michigan
Disclosures

This continuing education activity is managed and accredited by Professional Education Service Group. The material presented in this activity represents the opinion of the faculty. Neither PESG, nor any accrediting organization endorses any commercial products displayed in conjunction with this activity.

Commercial support was not received for this activity.
Faculty and Staff Disclosures

Dr. Segal has been a consultant for the following pharmaceutical companies:

TEVA, Biogen, Bristol Myers Squibb and Innate Therapeutics, Inc.

He has received non-restricted educational grants from TEVA and Biogen Idec.

Professional Education Services Group staff have no financial interest

Research Grant Support

The research studies presented in this lecture were supported by grants from the National Institutes of Health (Autoimmunity Centers of Excellence) and the Dana Foundation
Learning Objectives

- Learn about the dual roles of inflammation and neurodegeneration in MS
- Learn about the different stages of MS
- Discuss potential immune biomarkers in SPMS
Natural History of MS
The Autoimmune Theory of Multiple Sclerosis

• There is abnormal neuroinflammation but no consistent evidence for infectious agent in MS lesions

• The genes associated with susceptibility to MS are immune related

• Similarities between multiple sclerosis and ADEM/ EAE
Demyelination and Inflammation in the Spinal Cord

EAE

CONTROL

MBP
DAPI
The Two Aspects of Pathology in MS: Inflammation and Neurodegeneration
Axonal Pathology in the Optic Nerve during EAE
Demyelination and Axonopathy in the VCO of a mouse with conventional EAE

SMI32
MBP
DAPI
Is autoimmune inflammation still relevant during the SP stage of MS?

Evidence against a role of inflammation in SPMS

- Gadolinium enhancing activity (caused by new foci of inflammation) diminishes over time and does not correlate with progressive disability

- DMT that suppress or modulate the peripheral immune system are less effective in SPMS than RRMS

Evidence supporting a role of inflammation in SPMS

- Peripheral immune abnormalities are more prominent in patients with SPMS

- Aggressive chemotherapy (ex. Mitoxantrone) stabilizes some patients with SPMS

- Lymphoid follicles have been detected in the meninges of brain tissues from individuals with SPMS (Shift of autoimmune “headquarters” from peripheral lymphoid tissues to CNS?)
A 12 month longitudinal study of myelin-specific cytokine responses and MRI lesion development in RR and SP MS

- **Patient Population**

 12 RRMS
 26 SPMS
 39 Healthy Controls

- **Protocol**

 Phlebotomy - every 4 weeks
 MRI (contrast enhanced) - every 8 weeks
 EDSS evaluation every - every 12 weeks

- **Immunological Assay**

 IFN\(_\gamma\) and IL-17 Elispots - performed directly \textit{ex vivo}
 - Stimuli: whole human MBP
 Tetanus Toxoid

 Luminex assays
MBP-specific Th1 and Th17 PBMC are more frequent in RRMS and SPMS than HC.

Th1 personal average
- RR vs HC p < .01
- SP vs HC p < .01
- SP vs RR p = 0.792

Th1 personal variance
- RR vs HC p < .01
- SP vs HC p < .01
- SP vs RR p = 0.722

Th17 personal average
- RR vs HC p < .01
- SP vs HC p < .01
- SP vs RR p = 0.114

Th17 personal variance
- RR vs HC p < .01
- SP vs HC p < .01
- SP vs RR p = 0.016
The frequencies of TT-specific Th1 and Th17 PBMC are comparable in MS and HC.
The frequency of MBP-specific Th17 PBMC is stable over time
The Th17 response increases with disease duration.
Plasma levels of IL-17 inducible chemokines correlate with disease duration.

- **CCL2**: $R=0.459$, $p<0.001$
- **CXCL1**: $R=0.208$, $p=0.006$
- **CCL11**: $R=0.345$, $p<0.001$
- **Neutrophil elastase**: $R=0.452$, $p<0.001$
Expression of Th17 cells and myeloid chemokines correlates with EDSS

MBP-reactive Th17 cells

R=0.270
p<0.001

R=0.351
p<0.001

R=0.320
p<0.001

R=0.305
p<0.001

Expression of Th17 cells and myeloid chemokines correlates with EDSS.
Plasma levels of IL-17 inducible chemokines are upregulated in SPMS vs RRMS
Plasma levels of IL-17 inducible chemokines correlate with MRI T1 lesion load

CCL2

G-CSF

CCL11

Normalized T1 lesion volume

Normalized T1 lesion volume

Normalized T1 lesion volume

R=.502

R=.352

R=.448

p<0.001

p<0.001

p<0.001
Plasma levels of IL-17 inducible factors correlate with MRI T2 lesion load

<table>
<thead>
<tr>
<th>Immune parameter</th>
<th>Correlation (R)</th>
<th>Significance (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL2</td>
<td>.339</td>
<td>.001</td>
</tr>
<tr>
<td>CXCL1</td>
<td>.24</td>
<td>.02</td>
</tr>
<tr>
<td>CXCL5</td>
<td>n/a</td>
<td>n.s.</td>
</tr>
<tr>
<td>CCL11</td>
<td>.441</td>
<td><.001</td>
</tr>
<tr>
<td>Neutrophil Elastase</td>
<td>.468</td>
<td><.001</td>
</tr>
<tr>
<td>G-CSF</td>
<td>.629</td>
<td><.001</td>
</tr>
</tbody>
</table>
Plasma levels of Th17 related factors are inversely related to brain parenchymal fraction

<table>
<thead>
<tr>
<th>Immune parameter</th>
<th>Correlation (R)</th>
<th>Significance (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-17</td>
<td>-.361</td>
<td><.001</td>
</tr>
<tr>
<td>IL-23</td>
<td>-.491</td>
<td><.001</td>
</tr>
<tr>
<td>CCL2</td>
<td>-.474</td>
<td><.001</td>
</tr>
<tr>
<td>CXCL1</td>
<td>-.417</td>
<td><.001</td>
</tr>
<tr>
<td>CXCL5</td>
<td>-.295</td>
<td>.004</td>
</tr>
<tr>
<td>CCL11</td>
<td>-.451</td>
<td><.001</td>
</tr>
<tr>
<td>Neutrophil Elastase</td>
<td>-.277</td>
<td>.028</td>
</tr>
</tbody>
</table>
Eotaxin 3 is elevated in the CSF of SPMS patients

- Eotaxin 3 pg/ml

- Ctrl
- RRMS
- SPMS

- p = 0.0085
- p < 0.0001
- p < 0.0001

- Ctrl
- RRMS
- SPMS
Conclusions

• MBP-specific Th1 and Th17 cells are enriched in the peripheral T cell repertoire of individuals with MS (?epiphenomenon or causal relationship)?

• Immune dysregulation persists in individuals with SPMS

• IL-17 and related cytokines are potential therapeutic targets for the treatment of SPMS.
Acknowledgements

Lab members

Kevin Carbajal, PhD
Patrick Duncker
David Giles
Amanda Huber, PhD
Tina Jones
Mark Kroenke, PhD
Stephen Lalor, Ph.D.
Julie Rumble, PhD
Praveen Rao, PhD
Joshua Stoolman
Heather Walk

Collaborators

Sven Ekholm, MD (University of Rochester)
Ashok Srinivasan, MD
Lu Wang, PhD
VirtualScopics, Inc.